Genetic evaluation of growth traits in beef cattle using random regression models

نویسندگان

  • F.W.C. Neser
  • J. B. van Wyk
  • P. Lubout
چکیده

_____________________________________________________________________________ Abstract Directand maternal heritabilities were estimated for weight traits in Brangus cattle using random regression models. After editing, 54 924 records, from birth(BW) to mature weight (MW) from 21 673 animals were selected for analysis. The data, which covered a period of 8 generations (1985 to 2010), were transformed to a log scale to accommodate the wide range of weights being studied (15 to 850 kg). Traits included in the analysis were birth(BW), weaning(WW), yearling(YW), eighteen month(FW) and three measurements of mature weight (MW). Linear polynomials with intercepts were fitted using random regression models. The direct heritability estimates were moderate and ranged from 0.13 to 0.25 while maternal heritability estimates were low ranging from 0.05 to 0.06. ________________________________________________________________________________

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression a...

متن کامل

Estimation of genetic parameters for production traits and somatic cell score in Iranian Holstein dairy cattle using random regression model

In this study test-day records of milk (kg), fat (g), and protein (g) yields, somatic cell score (SCS, cells/ML) collected by Animal Breeding Center of Iran during 2007 and 2009 were used to estimate genetic parameters using random regression model. Models with different order of Legendre polynomials were compared using Bayesian information criterion (BIC).For milk, fat yield and SCS genetic an...

متن کامل

Bayesian inference of genetic parameters for reproductive traits in Sistani native cows using Gibbs sampling

This study was undertaken to estimate the genetic parameters for some reproduction traits in Sistani beef cattle. The data set consisted of 1489 records of number of insemination, calving, and insemination dates in different calving was used. Reproduction traits including calving interval (CI), gestation length (GL), days open (DO), calving to first service (CTFS), first service to conception (...

متن کامل

Constructing covariance functions for random regression models for growth in Gelbvieh beef cattle.

Genetic parameters for a random regression model of growth in Gelbvieh beef cattle were constructed using existing estimates. Information for variances along ages was provided by parameters used for routine Gelbvieh multiple-trait evaluation, and information on correlations among different ages was provided by random regression model estimates from literature studies involving Nellore cattle. B...

متن کامل

Genetic evaluation using multi-trait and random regression models in Simmental beef cattle.

The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likeli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012